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ment to active areas of transcription, and its role in

pre-mRNA splicing depends on the association of a
number of multifunctional serine/arginine-rich (SR) proteins.
ZNF265 is an arginine/serine-rich (RS) domain containing
zinc finger protein with conserved pre-mRNA splicing pro-
tein motifs. Here we show that ZNF265 immunoprecipi-
tates from splicing extracts in association with mRNA, and
that it is able to alter splicing patterns of Tra2-B1 transcripts
in a dose-dependent manner in HEK 293 cells. Yeast two-
hybrid analysis and immunoprecipitation indicated inter-

The formation of the active spliceosome, its recruit-

action of ZNF265 with the essential splicing factor proteins
U1-70K and U2AF*. Confocal microscopy demonstrated
colocalization of ZNF265 with the motor neuron gene
product SMN, the snRNP protein U1-70K, the SR protein
SC35, and with the transcriptosomal components p300 and
YY1. Transfection of HT-1080 cells with ZNF265-EGFP fu-
sion constructs showed that nuclear localization of ZNF265
required the RS domain. Alignment with other RS domain-
containing proteins revealed a high degree of SR dipeptide
conservation. These data show that ZNF265 functions as a
novel component of the mMRNA processing machinery.

Introduction

Gene transcription and pre-mRNA splicing are dynamic and
highly coordinated processes that occur in a spatially orga-
nized manner in the nucleus (Singer and Green, 1997).
Splicing takes place in the spliceosome, a large RNA—protein
complex composed of various small nuclear ribonucleopro-
tein particles (snRNPs),* and many other protein factors that
include members of the highly conserved serine/arginine-rich
(SR) protein family. SR proteins, by RNA—protein and pro-
tein—protein interactions, coordinate the passage of the spli-
ceosomal complex though the splicing reaction (reviewed in
Fu, 1995; Manley and Tacke, 1996; Céceres et al., 1997). SR
protein recruitment to active areas of transcription and RNA
processing involves their signature arginine/serine-rich (RS)
domains and an interaction with RNA polymerase II through
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its COOH-terminal domain (Yuryev et al., 1996; Du and
Warren, 1997; Kim et al., 1997; Misteli and Spector, 1999).

RS domains mediate protein—protein interactions with
other general splicing factors during the formation of the
spliceosome. By yeast two-hybrid for example, interactions
of the SR proteins SC35 and SF2/ASF with both U1-70K
and U2AF? have been documented, the latter two proteins
functionally binding to the 5" and 3’ splice sites, respec-
tively, in early splicing complexes (Wu and Maniatis, 1993;
Cao and Garcia-Blanco, 1998). Binding of SR proteins to
exonic splicing enhancers generally stimulates splicing (Sun
et al., 1993; Dirksen et al., 1994; Liu et al., 1998, 2000; re-
viewed in Blencowe, 2000), but antagonism of splice site
recognition has also been observed (Labourier et al., 1999;
Barnard and Patton, 2000). Many of the functions of SR
proteins are facilitated by a meshwork of interacting factors
that promote the passage of the splicing reaction and partici-
pate in postsplicing processes such as mRNA transport,
which appears to be coupled to splicing (Cdceres et al.,
1998; Belshan et al., 2000).

ZNF265 (formally termed “Zis”) is a zinc finger— and RS
domain—containing protein (Karginova et al., 1997; Adams
et al., 2000) that was first identified, along with renin, be-
cause of its modulated expression in differentiating renal
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juxtaglomerular cells (Karginova et al., 1997); it is now
known to be expressed by most tissues, especially early in de-
velopment (Adams et al., 2000). We have also found that
the nuclear magnetic resonance solution structure of the zinc
fingers accords with RNA binding (Plambeck, C.A., D.].
Adams., L. van der Weyden., J.P. Mackay, and B.]. Morris.
22" Ann. Conf. Org. Express. Genome. 2001. Abstr. 2-28).
Therefore, we explored the function of ZNF265 by demon-
strating its localization within cells, identifying the other
proteins that it binds to in splicing complexes, and showing
its potential to modulate alternative splicing in cells.

Results and discussion

Using a polyclonal ZNF265 antibody (Fig. 1 A) and anti-
bodies directed against specific components of the spliceo-
some, we observed nuclear colocalization of ZNF265 with
the survival of motor neuron (SMN) protein, the authentic
SR protein SC35 (at the periphery of the SC35-staining ag-
gregates), and the snRNP protein U1-70K, but none with
the common snRNP protein antigen Sm (Fig. 1 B). As ex-
pected, SMN showed some cytoplasmic localization (Pag-
liardini et al., 2000), but this did not overlap with the trace
amount of cytoplasmic ZNF265 localization (Fig. 1 B).
ZNF265 also colocalized with the transcription factors YY1
and p300 (Fig. 1 B), both of which have been shown to
colocalize within active transcriptional compartments and,
in the case of p300, with RNA polymerase II (Bannister and
Kouzarides, 1996; Ogryzko et al., 1996; Yang et al., 1996;
von Mikecz et al., 2000). These colocalizations are consis-
tent with a role for ZNF265 in transcription and/or splicing.
In this regard, ZNF265 may be cotranscriptionally recruited
with RNA polymerase II to pre-mRNA transcripts, as has
been reported for other RS domain—containing proteins
(Corden and Patturajan, 1997).

To determine the region of ZNF265 necessary for its nu-
clear localization, cDNA expression plasmids were generated
from which specific domains were deleted. Compared with
the nuclear localization of the wild-type ZNF265 fusion pro-
tein (C2-ZNF265), fusions containing the zinc finger with
(C2-Mut3) or without (C2-Mut2) the putative nuclear local-
ization signal (NLS) showed a predominantly cytoplasmic
distribution (Fig. 2). In contrast, nuclear localization was pre-
served when the RS domain was retained, either with (C2-
Mut4) or without (C2-Mut5) the NLS. Consistent with this
observation, nuclear localization was not affected by mutation
of the NLS (C2-Mut6). Thus, nuclear localization is dictated
by the RS domain of ZNF265, consistent with the behavior
of other RS proteins such as SC35 (Hedley et al., 1995), SF2/
ASF, SRp20, and 9G8 (Céceres et al., 1997, 1998).

To test whether ZNF265 could interact with other RS do-
main—containing proteins we conducted a yeast two-hybrid
screen against representative spliceosomal proteins that in-
cluded many with RS domains, namely U1-70K, U2AF?,
U2AF®, SC35, p80 Coilin, WT1, 9G8, SF2/ASF, SRp20,
SRp30c, and SRp40. Interaction was seen with U1-70K and
U2AF?, as determined by growth on SD-L-W-A-H plates,
and the production of a blue precipitate on a 3-gal filter as-
say (Fig. 3 A). Interaction of ZNF265 with U1-70K and
U2AF” was confirmed by coimmunoprecipitation (Fig. 3

B). Liquid B-gal assay, which provides a semiquantitative es-
timation of interaction strength, showed that ZNF265 in-
teracted more strongly with U1-70K than with U2AF” (Fig.
3 C). A U1-70K cDNA clone was also isolated in a yeast
two-hybrid screen against a human fetal brain cDNA library
using ZNF265 as “bait.” Analysis of this clone revealed that
residues 180-437 of U1-70K were responsible for mediating
the interaction of U1-70K with the RS domain of ZNF265
(unpublished data). It is notable that this region contains the
residues necessary for the binding of SF2/ASF to U1-70K
(Cao and Garcia-Blanco, 1998). Several cDNA clones for
the SR protein kinase Clkl were also isolated from this
screen. Because ZNF265 contains the Clk1 consensus phos-
phorylation site R/KXR/KXR/KXSXXR (Colwill et al.,
1996; Moeslein et al., 1999), there may be a role for phos-
phorylation in the regulation of ZNF265.

The fact that ZNF265 interacts with UI1-70K and
U2AF? points to its early commitment to the spliceosome,
as the latter factors are necessary for the first detectable asso-
ciation between splice sites during formation of the E com-
plex (Michaud and Reed, 1993; Wu and Maniatis, 1993;
Xiao and Manley, 1998). Based on the composition of affin-
ity-purified E complex, this association has been proposed to
occur though direct or indirect interaction of UlsnRNP and
U2AF® bound to the 5’ and 3’ splice sites, respectively
(Michaud and Reed, 1993). One model has suggested that
SF2/ASF or SC35 was subsequently able to form a bridge
between U1-70K and U2AF?® (Wu and Maniatis, 1993). In
contrast to the interaction of SF2/ASF and SC35 with Ul-
70K and U2AF” (Wu and Maniatis, 1993), our finding
that ZNF265 interacts more strongly with U1-70K than
with U2AF? (Fig. 3 C) suggests earlier binding of ZNF265
to U1-70K, as opposed to U2AF”, during recruitment to
the spliceosome.

Alignment of the RS domain of ZNF265 with that of
other RS domain—containing spliceosomal proteins (Fig.
4) showed strong SR dipeptide conservation; this was par-
ticularly evident between ZNF265, SC35, and SRp40.
The aligned region of SC35 contains the putative RS do-
main NLS, RRRRRSRSRSRSRSRSRSRSRYSRSKSRSR-
TRSRSRSTSKSRS (Hedley et al., 1995).

The specific recognition of splice sites within pre-mRNA
precursors has been proposed as a control point for splicing.
RS domain proteins could play a major role in such regula-
tion, as they are required for the early recognition of splice
sites during spliceosome assembly. Thus, the structural fea-
tures of ZNF265, its nuclear localization, and its association
with U1-70K and U2AF® prompted us to investigate a
functional role for this protein in pre-mRNA splicing.

In vitro splicing reactions showed that ZNF265 is immu-
noprecipitated in a complex that includes spliced mRNA
(Fig. 5 A). This result indicates that ZNF265 binds directly
or indirectly to mRNA, but much less to pre-mRNA. This
property is shared with other splicing factors, such as SF2/
ASF and RNPS1 (Hanamura et al., 1998; Mayeda et al.,
1999), both of which synergistically stimulate general splic-
ing. Here we show in splicing assays in cultured cells that
ZNF265 can regulate alternative splicing in a concentration-
dependent manner (Fig. 5 B). Namely, overexpression of
ZNF265 resulted in exclusion of exons 2 and 3 from the

TTO0Z ‘9 Ae uo Bio°ssaidni gal woll papeojumoq


http://jcb.rupress.org/

Published July 9, 2001

A & B
Q
& éz.l (Alexa 594)
o 49 6
Q'{P é(‘mé‘-q')
SR U1-70K
& Te
b | kDa
-80
e -60
— -:’mim -50 Sm
~40
o -
0 .

ZNF265—a novel spliceosomal protein | Adams ecal. 27

Nuclear stain
(DAPI)

ZNF265
(Alexa 488)

Scattergram

Overlay

&
<

Figure 1. Subcellular colocalization of endogenous ZNF265 with endogenous nuclear factors. (A) Immunoblotting assay demonstrates spe-
cific recognition of ZNF265 by the polyclonal ZNF265 antibody (the arrow shows a 55-kD band), which was competed by ZNF265 oli-
gopeptide antigen (2.5 pg/ml) in three replicate experiments. (B) Subcellular localization of various protein factors. Fixed Calu-6 cells were
exposed to: (1st column) monoclonal antibodies against splicing factors U1-70K, Sm antigen, SC35, SMN, or transcriptosomal factors p300
and YY1, in respective rows, before incubation with Alexa 594 anti-mouse IgG (red); (2nd column) staining with anti-ZNF265 and detection
with Alexa 488—conjugated anti-rabbit IgG (green); (3rd column) DAPI staining of nucleus (blue); (4th column) digital overlay of Z-series pro-
jections shown in columns 1 and 2 to demonstrate colocalization (yellow); (5th column) scattergrams of the overlayed projection shown in
column 4. Each row represents the same field (width X height = 60 X 60 um), acquired using three-channel confocal microscopy.

Tra2-B1 pre-mRNA, which led to an increase in the pro-
duction of the B3 alternatively spliced isoform. Our in vivo
splicing result suggests that ZNF265 may have the ability to
antagonize the alternative splicing activity of SR proteins on
Tra2-B1 pre-mRNA. Splicing factor SR protein-mediated
antagonism of alternative 5" splice site selection has been re-
ported for human hnRNP Al protein in that hnRNP Al
causes activation of distal alternative 5 splice site and exon
exclusion in vitro and in vivo (Mayeda and Krainer, 1992;
Mayeda et al., 1993; Cdceres et al., 1994; Yang et al., 1994).
In contrast to hnRNP Al that does not cause inhibition of
general constitutive splicing, we have shown that addition of
recombinant ZNF265 to SR protein-deficient Hela cell
S100 extracts supplemented with recombinant SF2/ASF
may antagonize constitutive splicing of a P-globin pre-
mRNA substrate and repress its splicing (our unpublished
data). In Drosophila, RSF1 protein antagonizes and represses
splicing by binding to SF2/ASF and preventing it from in-

teracting with U1-70K (Labourier et al., 1999). It is possible
that ZNF265 may also interfere with SF2/ASF-mediated
constitutive splicing by binding directly to U1-70K.

The suggestion that ZNF265 binds directly to mRNA is
supported by the association of the zinc finger region of the
Xenopus homologue C4SR with c¢yclin 1B mRNA (Ladomery
et al., 2000). Furthermore, our nuclear magnetic resonance
studies of the first zinc finger of ZNF265 indicate a struc-
ture capable of binding zinc ions, which in turn induce con-
formational changes in the finger to expose RNA binding
side chains (Plambeck, C.A., D.J. Adams, L. van der Wey-
den, J.P. Mackay, and B.]. Morris. 22" Ann. Conf- Org. Ex-
press. Genome. 2001. Abstr. 2-28).

In conclusion, we have shown that ZNF265 colocalizes
with the spliceosome, associates with mRNA and essential
splicing factors U1-70K and U2AF?, and can regulate alterna-
tive splicing of the Tra2-B1 pre-mRNA. Therefore, ZNF265

is a functional component of the RNA processing machinery.
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Figure 3. Interaction of ZNF265 with the essential spliceosomal factors U1-70K and
U2AF*. (A) Activation-domain plasmids (pACT) p80 coilin (1), 9G8 (2), SC35 (3), SRp20
(4), SRp30c (5), SRp40 (6), U1-70K (7), U2AF®® (8), U2AF* (9), WT1 (10), ASF/SF2 (11),
and negative control SNF4 (12), were transformed into AH109 yeast containing the
pGBK-ZNF265 binding-domain plasmid, cultured on SD-L-W-A-H plates, and trans-
ferred to filters. The ability of the yeast containing pGBK-ZNF265 and either pACT-U1-
70K or pACT-U2AF* to grow on autotrophic media (I: brown) and produce B-gal (II:
blue) was observed. The inability of yeast containing pACT plasmids alone to produce
B-gal (lll) was shown as a control. (B) Results of coimmunoprecipitation performed using
anti-ZNF265 to pulldown U1-70K and U2AF*® in association with ZNF265 from Hela
cell nuclear extracts. Immunoprecipitates were analyzed by Western blotting using anti-
bodies against U1-70K or U2AF?> (arrow points to band of predicted size). (C) Relative

strength of interaction of ZNF265 with U2AF*> or U1-70K, shown as B-gal activity rela- 0 Control U2AF3  U1-70K
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ZNF265

SF2/ASF Figure 4. Conservation of serine and argi-
53320 nine residues in ZNF265 and other RS do-
ggs;g main proteins. Alignment of the RS domain of
SRp75 ZNF265 (NP_005446) with RS domains of the
H;A&? spliceosomal proteins SF2/ASF (NP_008855),
3(25%1:55 SC35 (A42634), SRp20 (NP_003008), SRp40
p54 (§59042), SRp55 (§59043), SRp75 (A48133),

U1-70K (A25707), U2AF** (Q01081), U2AF®
(NP_009210), 9G8 (A57198), and p54 (XP_001835). Sequence alignment was performed using “Pileup” and “Prettybox” (Australian Ge-
nomic Information Service). Residues conserved in the majority of the aligned proteins are shaded. Numbers indicate the amino acid position
of each protein.

. HB 8065), and HEK293 (ATCC CRL 1573) were maintained at 37°C, 5%
Materials and methods CO, in DME (GIBCO BRL) supplemented with 10% FCS (GIBCO BRL),

Cell culture penicillin/streptomycin (5,000 U/ml; GIBCO BRL).

Cell lines were obtained from The American Type Culture Collection . .

(ATCC). Calu-6 cells (ATCC HTB-56) were cultured at 37°C, 5% CO, in  Antibodies

MEM (GIBCO BRL) as described previously (van der Weyden et al., 2000). ZNF265 polyclonal antibodies (produced for us by Alpha Diagnostics)
HT-1080 human fibrosarcoma cells (A\TCC CCL 121), Hela cervical carci- were generated by inoculating New Zealand white rabbits with a keyhole
noma cells (ATCC CCL 2), HepG2 hepatocellular carcinoma cells (ATCC limpet hemocyanin-tagged peptide (CEDEDLSKYKLDEDED) correspond-
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Figure 5. Function of ZNF265 in the spliceosome. (A) In vitro splicing reactions were performed using labeled B-globin pre-mRNA and im-
munoprecipitated with the indicated antibodies, pre-immune serum, anti-SF2/ASF/anti-hnRNP A1, and increasing amounts of anti-ZNF265
(shown by triangle), immobilized on protein G-Sepharose. The immunoprecipitated complexes were washed extensively and RNA was ex-
tracted and analyzed by denaturing PAGE followed by autoradiography. 1/20 of total RNA recovered from the supernatant of an immunopre-
cipitation with control preimmune serum reflects the initial relative abundance of predicted pre-mRNA, intermediates and products, which
are schematically depicted on left hand side. (B) Ability of ZNF265 to stimulate exon exclusion of alternatively spliced Tra-1 pre-mRNA. At
top is schematic diagram of the Tra2-B1mini- gene construct and splice products (introns: A, B, C; exons: 1, 2, 3, 4). HEK 293 cells were
transfected with 3 pg of total plasmid DNA and, as indicated below abscissa, an increasing proportion of the expression plasmid C2-ZNF265.
Representative ethidium bromide stained gel is shown, with schematic diagram of 31, 3, and B4 isoforms detected by this assay depicted on
the right. (M) 100-bp marker. Relative abundance of the B4, 1, and B3 isoforms from each lane (mean = SD) from three experiments is
shown in the panels.
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ing to amino acids 160-174 of ZNF265 (GenBank/EMBL/DDB]J accession
no. NP005446). Antiserum was affinity purified by column chromatogra-
phy using antigen peptide immobilized on Sepharose-4B beads. Mono-
clonal SC35, p300, and YY1 antibodies were from PharMingen, Calbio-
chem, and Santa Cruz Biotechnology, Inc., respectively. Monoclonal SMN
antibody (clone 11F3) was provided by Dr. G.E. Morris (MIRC Biotechnol-
ogy Group, North East Wales Institute, Wrexham, UK), monoclonal Sm an-
tibody (Lerner et al., 1981) was provided by Dr. A.l. Lammond (University
of Dundee, Dundee, UK), monoclonal hnRNP-Al antibody (mAb9H10) was
provided by Dr. G. Dreyfuss (Howard Hughes Medical Institute, University
of Pennsylvania, Philadelphia, PA), and polyclonal U2AF* (Zuo and Ma-
niatis, 1996) and monoclonal U1-70K (Wu and Maniatis, 1993) were pro-
vided by Dr. T. Maniatis (Harvard University, Boston, MA). The SF2/ASF
(mAb96) antibody used has been described previously (Hanamura et al.,
1998). Secondary antibodies used were: Alexa Fluor 488-conjugated goat
anti-mouse 1gG (Molecular Probes), Alexa Fluor 594-conjugated goat
anti-rabbit IgG (Molecular Probes), alkaline phosphatase-conjugated rab-
bit anti-mouse 1gG (Sigma-Aldrich), and alkaline phosphatase-conjugated
goat anti-rabbit IgG (Sigma-Aldrich).

Fluorescence, indirect immunofluorescence, and imaging

In preparation for visualization of fluorescence, cells were cultured on
Lab-Tek chamber slides (Nunc) and fixed with 2% paraformaldehyde in
situ. The cells were then permeablized with 0.5% (vol/vol) Triton X-100
in PBS for 1 h before being blocked overnight with 5% (vol/vol) goat serum
in PBS. After sequential 45 min incubations at 37°C with the primary and sec-
ondary antibodies, the cells were stained with 300 nM DAPI (Molecular
Probes) before being mounted with DABCO in PBS (Johnson et al., 1982).
For localization studies using the ZNF265-enhanced green fluorescent
protein (EGFP) fusion constructs, HT-1080 cells were transfected using Su-
perFect (QIAGEN) on Lab-Tek chamber slides and then fixed, DAPI
stained, and mounted (as described above). Two-channel fluorescent im-
ages of the cells were acquired using a 12-bit cooled CCD camera (Sensi-
cam) attached to an epifluorescent microscope (model E800; Nikon). For
ZNF265 colocalization studies, three-channel fluorescent images were ac-
quired on a Two Photon Imaging System (TCS MP; Leica) combined with a
confocal microscope (TCS SP; Spectral). Both Alexa 488 and Alexa 594
were excited using the 488 line of an argon laser, whereas DAPI was ex-
cited in two-photon mode. Sequential scan Z-sections were obtained at
0.2 pm intervals, and projections through the Z-stack were created using
confocal software (Leica). Colocalization scatter diagrams were created to
confirm and quantify visual interpretation of single Z-sections and digitally
projected images. All immunofluorescent images shown are representative
of three independent experiments in which >95% of at least 500 cells as-
sessed exhibited the same morphological pattern.

Plasmid constructs and subcloning

Full-length ZNF265 cDNA was amplified by RT-PCR and subcloned into
pGEM T-Easy (Promega) to create the plasmid pZNFA (Adams et al., 2000).
pZNFA was used as a template for PCR using primers ZNF-5’A (ctcgagtat-
gtcgaccaagaatttccgactc), which incorporates a 5’ Xhol site, and ZNF-3'A
(cgcgttcgaagctctcecatatg). The resulting fragment was subcloned into
pEGFP-C2 vector (CLONTECH Laboratories, Inc.) to generate C2-ZNF265,
an in-frame fusion protein between ZNF265 and EGFP. PCR was used to
obtain various domains of ZNF265 as EGFP fusion clones using C2-EGFP—
pEGFP-C2. Plasmid constructs and PCR primers used were: C2-Mut2 (first
96 amino acids of ZNF265), primers ZNF-5'A and ZNF-3'B (ttatttagcat-
actttggagtatta); C2-Mut3 (zinc finger domains and NLS), primers ZNF-5'A
and ZNF-3'C (gatcttcatccttcatcectc); C2-Mut4 (NLS and RS domains),
primers ZNF-5'B (ctcgagagaatctgatggtgaatatgatg) and ZNF-3'A; C2-Mut5
(RS domain alone), primers ZNF-5'C, and ZNF-3'B (ctcgagagaatcagagg-
gagaagaagagg). PCR (PCR Supermix High Fidelity; GIBCO BRL) consisted
of 35 cycles of 95, 60, and 68°C for 1 min each, followed by 10 min at
68°C. C2-Mut6 (residues, RKKKK—AAAAA) was generated from C2-
ZNF265 using primers NLS5 (gatggtgaatatgatgagtttggagctgcagcggcagcata-
cagagggaaagcagttgg) and NLS3' (ccaactgctttccctctgtatgetgeegcetgeageteca-
aactcatcatattcaccatc), which destroyed the core sequence of this puta-
tive NLS. PCR was as above except that annealing was at 50°C, fol-
lowed by digestion with 30 U of Dpnl for 3 h. Clones were sequenced
to confirm that the mutation had been introduced correctly. The ZNF265
yeast two-hybrid construct (pGBKT7-ZNF265) was generated by subclon-
ing a BamHI-Pstl fragment of the 1-kb PCR product amplified using the
primers ZNF-3'A and ZNF-5'D (ggatccttatgtcgaccaagaatttccgagt), with
clone ZNFA as template, into pGBKT7 vector (CLONTECH Laboratories,

Inc.). DNA binding domain (pAct-BD) plasmids were provided by Drs. N.
Hastie, R. Davies (MRC, Edinburgh, UK), and D. Elliot (University of New-
castle, Newcastle, UK) (Davies et al., 1998; Elliott et al., 2000).

Western blot analyses and immunoprecipitation

Calu-6, HT-1080, and HepG2 cells (4 X 10°) were washed with PBS be-
fore being scraped off the flask and electrophoresed through a 12% SDS-
PAGE gel (Laemmli, 1970). Proteins were then electroblotted onto polyvi-
nylfluoride membrane (Gelman), blocked overnight in 5% skim milk, and
incubated with ZNF265 antibody (1:250) for 2.5 h at 22°C, followed by
goat anti-rabbit IgG (1:30,000) for another 2.5 h. Immunocomplexes were
visualized by incubation of membrane in BCIP-NBT solution (FAST tablets;
Sigma-Aldrich) for 5 min. For immunoprecipitations, Hela cell nuclear ex-
tracts (100 pwg/ml) (Dignam et al., 1983) were incubated with ZNF265 anti-
body in 1 ml TNE buffer (10 mM Tris-HCI, pH 7.5, 1 mM EDTA, 0.15 M
NaCl, 0.05% Nonidet P-40) for 2 h at 22°C. Protein G agarose (50% vol/
vol in PBS; Roche) was added and the samples were rocked for 2 h at 22°C
before being washed in TNE buffer. The samples were then analysed by
Western blotting (as described above) using a rabbit anti-U2AF* antibody
(1:350) or mouse anti-U1-70K antibody (1:250).

Yeast culture and two-hybrid assay

Budding Saccharomyces cerevisiae strain AH109 (James et al., 1996) were
cultured in YPAD (1% wt/vol yeast extract, 2% wt/vol peptone, 0.003%
adenine, 2% wt/vol dextrose) and transformed sequentially (Gietz and
Schiestl, 1991), first with pGBKT7-ZNF265, then with the appropriate acti-
vation domain plasmid. The yeast were then plated onto synthetic defined
medium deficient in leucine, tryptophan, histidine, and adenine (SD-L-W-
H-A), supplemented with kanamycin (30 pg/ml), and incubated at 30°C for
1 wk. The transformants were then analyzed for B-galactosidase (B-gal) ex-
pression by both filter assay (Turner and Crossley, 1998) and liquid assay
(Galacton-Light Plus Kit; Tropix) (Asoh et al., 1998). Screening of the fetal
brain cDNA library with ZNF265 as “bait” used S. cerevisiae strain AH109
(James et al., 1996) and Y187 (Harper et al., 1993). The bait ZNF265 plas-
mid was transformed into AH109, and the library plasmids were supplied
pretransformed into Y187 (MATCHMAKER System 3; CLONTECH Labora-
tories, Inc.). At least 3.5 X 10° individual library plasmids were screened
based on the ability of the transformed yeast to grow on SD-L-W-A-H
plates and express B-gal. Library plasmids from 40 positive interactions
were rescued from the yeast and sequenced.

In vitro and in vivo splicing and immunoprecipitation
of splicing complexes
m’GpppG-capped *?P-labeled pre-mRNA substrates were made by runoff
transcription of linearized template DNA with SP6 RNA polymerase (May-
eda et al., 1999). B-Globin plasmid pSP64-HBA6, used for in vitro tran-
scription, has been described previously (Krainer et al., 1984). Hela cell
nuclear extracts were made as reported previously (Mayeda and Krainer,
1999). Immunoprecipitation of the products of in vitro splicing reactions
was performed according to Hanamura et al.’s method (1998). The RNA
products of the immunoprecipitates were analyzed by electrophoresis on a
5.5% polyacrylamide/7 M urea gel, followed by autoradiography.
Additional splicing assays were performed essentially as described in
Stoss et al. (1999). Human transformer-2-B1 (Tra2-B1) minigene (Nayler et
al.,, 1998) and C2-ZNF265 expression plasmids were transfected into
HEK293 cells. After RNA isolation and reverse transcription (Hartmann et
al., 1999), PCR to amplify minigene products was performed thus: 35 cycles
of 94°C for 15 s, 65°C for 20 s, and 72°C for 40 s (Daoud et al., 1999). The
resulting splicing pattern was quantified using the Herolab EASY system.
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